Meet Inspiring Speakers and Experts at our 3000+ Global Conference Series Events with over 1000+ Conferences, 1000+ Symposiums
and 1000+ Workshops on Medical, Pharma, Engineering, Science, Technology and Business.

Explore and learn more about Conference Series : World's leading Event Organizer

Back

7th Annual Summit on Microbiology: Education, R&D and Market

San Antonio, USA

Alexander Zuniga

Alexander Zuniga

Texas A&M University, USA

Title: Displacement ventilation to prevent pathogen spread during meat processing

Biography

Biography: Alexander Zuniga

Abstract

Statement of problem: Bacteria have posed a serious problem to the commercial and private food industries for centuries. Only recently have aerosolized bacteria been seen as a large threat to human health and shelf life of food. The beef industry has a particular hard problem in maintaining a clean environment in the slaughterhouses that process the cattle. The main bacteria that threaten human health with regards to beef are Salmonella, STEC E. coli, Campylobacter jejuni, Listeria monocytogenes, and Staphylococcus aureus. In particular importance to this study is Salmonella and STEC E. coli, due to their prevalence and severe pathogenic qualities. Methodology & Theoretical Orientation: In this study one major beef facility established in Texas was sampled during the spring, summer seasons and soon to be fall. In order to identify the location and sources of contamination efficient samplers, such as the wetted wall cyclone (WWC), were used. These collectors were continuously sampling air at 100L/min for a whole working day period around the facility. The locations that were focused on were the dehiding area, Hot Box, tripe room, and fabrication room. The samples were analyzed by microbial plating, whole-cell qPCR and microbiome sequencing. The facility
was then modeled in a computational fluid dynamics program using blueprints of the facility’s structure as well as their heating, ventilation, and air conditioning (HVAC) system. Lastly marking where the detection zones were and analyzing the structure of the facility new implementations of the facility’s HVAC system was designed to reduce pathogenic spreading. Findings: The concentration of airborne Salmonella and STEC has elevated during the summer months. The computational air flow models that were created based on the facility’s layout and ventilation design validated with the collected bioaerosol concentrations enabled the visualization of the pathogen movement in meat processing facilities. The optimization of the air flow for improved sanitation and our design will be implemented in the facility for validation and further analysis. Conclusion & Significance: Based on the air flow pattern models and bioaerosol movement older facilities can update their HVAC system to reduce pathogenic spread.